

I.S.RIVERS LYON 2018

PASSIVE ACOUSTIC MONITORING

OF BEDLOAD DISCHARGE

- Objective
 - Bedload measurement with physical samplers is heavy, expensive and sometime dangerous
 - We develop an indirect measurement method based on underwater 'microphones' which record the sound

generated by bedload particles impacting the river bed.

Figure 1 : Bedload sampler, aDcp and Passive Acoustic Measurements deployed in the Isère River (France).

• Method 1 : acoustic profiles

- This method gives information on total bedload discharge and spatial distribution over the entire cross-section. Bedload measurements can be performed in a reduced time (typically an hour) and do not require heavy operational means.
- Experiments conducted on 7 rivers suggest that passive acoustic profiles are a rather reliable surrogate of bedload discharge measurements

River	Local Slope	River Width	Label on	Date	Sample number	Discharge (m³/s)	Bedload [D ₅₀ ;D ₈₄]	30	Séveraisse 2017-05-30 PAM monitoring Bedload samplers	10 ¹⁴	
	(70)	(m)	graph				(mm)	25 -		//m	° A1
Arve	0.75	14	A1	2017-06-27	11	38	[1; 4]	()		0 a ²	• M
			A2	2017-06-28	15	29	[1; 3]	st 50-		三10 ¹³	
Grand Buëch	0.70	13	GB	2017-05-15	23	13	[39; 63]	emer		ver	
								Jn gg 15-		Ó	· · · · · · · · · · · · · · · · · · ·
lsère	0.05	60	I	2017-06-06	47	237	[2 ;13]	me		<u>i</u>	° S2 74
								 10-		호 10 ¹²	
Romanche	0.13	33	R	2017-06-14	38	55	[1 ;3]			cor	

Séveraisse	1.00	13	S1 S2	2017-05-17 2017-05-30	54 28	14 16	[5 ;48] [12 :52]
Moselle	0.1	16	M	2018-01-28	25	80	[20;47]
Selves	1.3	10	Sel	2017-09-19	60	15	[2 ;4]

Table 1 : bedload sampling characteristics in the 7 rivers where the experiences were conducted

Figure 2 : Cross-sectional comparison between Passive Acoustic Measurements (PAM) and bedload sampling in the Séveraisse River (France)

 $\begin{array}{ccc} 10^{11} \\ 10^{1} \\ q_{s} (g/m/s) \end{array}$ Figure 3 : Averaged acoustic power (µPa²/m²) in the crosssection, in function of averaged specific flux (g/m/s). Acoustic power is corrected according to sound propagation

ŏ G₿

○ Sel

attenuation effects in each river.

• Method 2 : continuous monitoring from the riverside

- Provides long-term observations of bedload processes
- Operational use of this method requires further methodological developments

Figure 4: Continuous monitoring from the riverside (Isère River, France): a) the monitoring station; b) example of temporal evolution in 2017 (time step = 1 hour)

• Perspectives

Figure 5 : Acoustic power at riverbank (μ Pa²) in function of Averaged acoustic power in the cross-section (μ Pa²) (Isère River – Grenoble, France)

- Well-adapted to large piedmont or plain rivers
- Research or River Management applications : estimate of critical shear stress and bedload discharge ; impact of an event (flood, hydraulic flush) ; monitoring after river restoration works

(1) EDF-DTG, Grenoble ; (2) Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, ; (3) IRSTEA-Etna, Grenoble