Spatial variation during the 2012 flushing operations:
- Increases of contaminant concentrations from Pougy to Seyssel are mostly related to the increase of the proportion of coarse particles:
 - Dilution of the contaminant concentration
- Variation from Seyssel to Jons is mostly related to the origin of the particles:
 - Resuspension of old sediment stored (contaminated in Benzo(a)pyrene and depleted in Pb)

Contaminant variation at Jons during 2011-2016 according to hydrological conditions:
- Contamination levels vary with hydrological conditions:
 - Particles that transited during flushing events were different than flood and baseflow

Proportion of annual contaminant fluxes in 2011-2012 at Jons
- Proportions are similar to SPM proportion:
 - Whatever the contaminant concentration, contaminant fluxes are more controlled by SPM concentration

This study was supported by the Rhône Sediment Observatory (OSR), a multi-partner research program partly funded by the Plan Rhône, and by the European Regional Development Fund (ERDF) allocated by the European Union.

Hugo Lepage1, Marina Launay2, Jérôme le Coz2, Hélène Angot2, Cécile Miegel2, Julie Gattaceca2, Olivier Radakovitch1,3, Marine Coquery2

10.17181/OBS.089

Contaminant concentrations were related to particle size (upstream) and SPM origins (downstream)

• Flushing triggered 37% of the annual sediment flux in 5% of 2011-2012
• Year without flush = annual output flux overestimated:
 - Storage of transported sediment
 - Year with flush = annual output flux underestimated:
 - Resuspension of stored sediment
• Unbalanced equilibrium over 5 years (±0.44 Mt):
 - Part of sediment remained stored despite flushing events

Mass distribution of sediments: average during 2011-2016 period

<table>
<thead>
<tr>
<th>Mass proportion (%)</th>
<th>Clay (µm)</th>
<th>Fine silt (1-15µm)</th>
<th>Coarse silt (>15µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseflow</td>
<td>23 ± 1</td>
<td>68 ± 11</td>
<td>12 ± 12</td>
</tr>
<tr>
<td>Flood</td>
<td>29 ± 1</td>
<td>64 ± 10</td>
<td>9 ± 6</td>
</tr>
<tr>
<td>Flushing (2012)</td>
<td>17 ± 1</td>
<td>76 ± 9</td>
<td>10 ± 4</td>
</tr>
</tbody>
</table>

• Flushing operations were also conducted in 2016 (different process with 1 period – only Q and [SPM] measured)
• For similar discharge, the SPM concentration is higher during flushing operations than flood events:
 - Different origins/sources of the particles

• Coarser particles than other hydrological conditions:
 - Various origins/sources of the particles

Particle size distribution: average during 2011-2016 period

SSPM release mitigated by Génissiat Dam operation

• Presence of other dams affect sediment flux:
 - Sediment transport is delayed
• Most of the sediments were rapidly deposited:
 - Effect of the particle size

Annual fluxes at Jons: output vs input (tributaries)

- Flushing triggered 37% of the annual sediment flux in 5% of 2011-2012
- Year without flush = annual output flux overestimated:
 - Storage of transported sediment
- Year with flush = annual output flux underestimated:
 - Resuspension of stored sediment
- Unbalanced equilibrium over 5 years (±0.44 Mt):
 - Part of sediment remained stored despite flushing events

Contaminant variation at Jons during 2011-2016 according to hydrological conditions:
- Contamination levels vary with hydrological conditions:
 - Particles that transited during flushing events were different than flood and baseflow

Proportion of annual contaminant fluxes in 2011-2012 at Jons
- Proportions are similar to SPM proportion:
 - Whatever the contaminant concentration, contaminant fluxes are more controlled by SPM concentration

This study was supported by the Rhône Sediment Observatory (OSR), a multi-partner research program partly funded by the Plan Rhône, and by the European Regional Development Fund (ERDF) allocated by the European Union.