Evaluation des sources de contaminants organiques dans les matières en suspension du bassin du Rhône

Résumé

Ce rapport s’intègre dans les travaux de l’Observatoire des Sédiments du Rhône, et a pour objet l’étude des sources d’hydrocarbures aromatiques polycycliques (HAP) et de polychlorobiphényles indicateurs (PCBi) dans les matières en suspension (MES) prélévées dans les cours d’eau du bassin du Rhône. Deux stations de prélèvements de MES situées sur le Rhône (à Arles et Jons) et quatre stations situées sur certains affluents (Arve, Bourbre, Gier, Saône) ont été étudiées. Les différentes stratégies mises en œuvre (ratios de diagnostic, évolution des profils de distribution, classification ascendante hiérarchique couplée à une analyse factorielle discriminante) ont permis de montrer que les principales sources d’émission de HAP sur ces stations sont en lien avec le trafic routier et le chauffage résidentiel. Sur le bassin de la Bourbre, les MES se caractérisent par la présence plus importante de HAP lourds d’origine pyrolytique. A Arles l’activité d’un incinérateur d’ordures ménagères proche de la station de mesure pourrait être à l’origine de l’enrichissement des MES en fluoranthène. L’étude des relations entre la somme des HAP et des PCBi suggère que ces contaminants proviendraient de sources distinctes. Des recherches approfondies sont donc nécessaires pour identifier l’origine des PCBi sur le bassin du Rhône.

Mots-clés

Matières en suspension, hydrocarbures aromatiques polycycliques, HAP, polychlorobiphényles indicateurs, PCBi, ratios de diagnostic, classification ascendante hiérarchique, analyse factorielle discriminante

Remerciements : Les auteurs tiennent à remercier André Chandesris de l’Irstea de Lyon pour ses conseils et son implication dans cette action de l’OSR.
Table des matières

LISTE DES FIGURES ... 6
LISTE DES TABLEAUX .. 7
LISTE DES ABBREVIATIONS .. 8
1 **CONTEXTE ET OBJECTIFS** ... 9
2 **PRINCIPALES SOURCES D’EMISSION DES MICROPOLLUANTS DANS L’ENVIRONNEMENT** 9
2.1 **HYDROCARBURES AROMATIQUES POLYCYCLIQUES (HAP)** ... 9
2.2 **POLYCHLORIPHENYLES (PCB)** .. 10
3 **PRESENTATION DU RÉSEAU DE SUIVI DE L’OSR ET LOCALISATION DES STATIONS** 11
4 **CARACTERISATION DES BASSINS VERSANTS ÉTUDES ET DESCRIPTION DES PRÉSSIONS ANTHROP PIQUES** . 13
5 **EVALUATION DES SOURCES DE HAP** .. 14
5.1 **MÉTHODE DES RATIOS DE DIAGNOSTIC** .. 14
5.2 **ÉVOLUTION DE LA DISTRIBUTION DES HAP AUX DIFFÉRENTES STATIONS DE L’OSR** 18
5.3 **ÉVALUATION DES SOURCES DE HAP PAR CLASSIFICATION ASCENDANTE HIERARCHIQUE (CAH) ET ANALYSE FACTORIELLE DISCRIMINANTE (AFD)** ... 20
5.3.1 **Constitution des groupes d’échantillons** .. 20
5.3.2 **Validation de la CAH par AFD et caractérisation des groupes** .. 21
5.3.3 **Évolution au cours du temps des teneurs en HAP et estimation des sources potentielles** 25
6 **EVALUATION DES SOURCES DE PCBI : ÉTUDE DES RELATIONS HAP-PCBI** 27
7 **CONCLUSION** ... 28
BIBLIOGRAPHIE .. 29
ANNEXE 1. .. 31
ANNEXE 2. ... 32
ANNEXE 3. .. 33
Liste des figures

Figure 1 : Localisation des stations du réseau de suivi de l’Observatoire des Sédiments du Rhône au 16 juin 2016. ... 11

Figure 2 : Suivi des HAP particulaires sur les stations de l’OSR entre 2011 et 2013. Echantillonnage des MES par centrifugeuse fixe à Arles, par piège à particules sur les autres stations. Fréquence bimensuelle à Arles et à Jons, mensuelle sur les affluents. Sur les barres figure le nombre d’échantillons sur lesquels les concentrations en HAP ont été mesurées. .. 12

Figure 3 : Caractérisation des pressions (anthropiques et naturelles) pour les bassins versants des différentes stations du réseau de suivi de l’OSR. .. 13

Figure 4 : Calculs de ratios de HAP dans les MES et évaluation des sources aux différentes stations de l’OSR. Phe = phénanthrène, Ant = anthracène, Fla = fluoranthène, Pyr = pyrène, Chy = chrysène, BaA = benzo(a)anthracène. .. 15

Figure 5 : Calculs de ratios de HAP dans les MES et évaluation des sources aux différentes stations de l’OSR. Phe = phénanthrène, Ant = anthracène, Fla = fluoranthène, Pyr = pyrène, Chy = chrysène, BaA = benzo(a)anthracène, IdP = Indéno(1,2,3-cd)pyrène, BghiP = Benzo(g,h,i)pérylène. 17

Figure 6 : Evolution temporelle de la distribution des 16 HAP dans les MES sur les différentes stations de l’OSR. Dates des changements remarquables entourées en rouge. .. 19

Figure 7 : Proportions relatives moyennes des HAP dans les MES en fonction du nombre de cycle aromatiques sur les stations de suivi de l’Observatoire des Sédiments du Rhône. Période novembre 2011 – juillet 2013. ... 20

Figure 8 : Classification ascendante hiérarchique appliquée aux échantillons de MES prélevés sur les stations de l’OSR, à partir des profils de distribution des HAP. Quatre clusters (groupes d’échantillons) sont définis (lignre pointillée). ... 21

Figure 9 : Graphique des corrélations variables - facteurs obtenus après AFD. .. 22

Figure 10 : Graphique des observations obtenu après AFD sur les échantillons de MES de l’OSR analysés pour les HAP et séparation des clusters issus de la classification ascendante hiérarchique. 23

Figure 11 : Profil de distribution moyen des HAP caractérisant les 4 clusters d’échantillons. En haut, profils par HAP individuels ; en bas, profils par nombre de cycles aromatiques. .. 24

Figure 12 : Evolution au cours du temps des teneurs en HAP particulaires sur les stations de l’OSR et identification des clusters d’échantillons. Barres rose = périodes de crue. Barre verte = chasses de barrage de juin 2012. .. 25

Figure 13 : Localisation de la station de prélèvement de MES à Arles et de l’incinérateur d’ordures ménagères S.I.L.I.M (Capture d’écran de Géoportail). ... 27
Liste des Tableaux

Tableau 1 : Récapitulatif de l’origine des HAP quantifiés dans les MES des stations de l’OSR, déterminée par la méthode des ratios. Phe = phénanthrène, Ant = anthracène, Fla = fluoranthène, Pyr = pyrène, Chy = chrysène, BaA = benzo(a)anthracène.

Tableau 2 : Nombre d’échantillons de MES de chaque station classés dans les différents clusters issus de la classification ascendante hiérarchique.

Tableau 3 : Matrice de confusion obtenue après AFD, à partir de quatre clusters (variables explicatives) issus d’une classification ascendante hiérarchique sur les échantillons de l’OSR, sur la base des proportions relatives des 16 HAP individuels (variables quantitatives) dans les MES.

Tableau 4 : Coefficients de corrélation (R^2) entre la somme des concentrations en HAP et la somme des concentrations en PCBi aux différentes stations étudiées. n = nombre d’échantillons.
Liste des abréviations

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace</td>
<td>Acénaphthène</td>
</tr>
<tr>
<td>Acy</td>
<td>Acénaphylène</td>
</tr>
<tr>
<td>AFD</td>
<td>Analyse factorielle discriminante</td>
</tr>
<tr>
<td>Ant</td>
<td>Anthracène</td>
</tr>
<tr>
<td>BaA</td>
<td>Benzo(a)anthracène</td>
</tr>
<tr>
<td>BaP</td>
<td>Benzo(a)pyrène</td>
</tr>
<tr>
<td>BbF</td>
<td>Benzo(b)fluoranthène</td>
</tr>
<tr>
<td>BghiP</td>
<td>Benzo(g,h,i)pérylène</td>
</tr>
<tr>
<td>BkF</td>
<td>Benzo(k)fluoranthène</td>
</tr>
<tr>
<td>CAH</td>
<td>Classification ascendante hiérarchique</td>
</tr>
<tr>
<td>Chy</td>
<td>Chrysène</td>
</tr>
<tr>
<td>DbA</td>
<td>Dibenzo(a)anthracène</td>
</tr>
<tr>
<td>Fla</td>
<td>Fluoranthène</td>
</tr>
<tr>
<td>Fle</td>
<td>Fluorène</td>
</tr>
<tr>
<td>HAP</td>
<td>Hydrocarbures polycycliques aromatiques</td>
</tr>
<tr>
<td>IdP</td>
<td>Indéno(1,2,3,cd)pyrène</td>
</tr>
<tr>
<td>MES</td>
<td>Matières en suspension</td>
</tr>
<tr>
<td>Nap</td>
<td>Naphtalène</td>
</tr>
<tr>
<td>OSR</td>
<td>Observatoire des sédiments du Rhône</td>
</tr>
<tr>
<td>PAP</td>
<td>Piège à particules</td>
</tr>
<tr>
<td>PCBi</td>
<td>Polychlorobiphényle indicateur</td>
</tr>
<tr>
<td>Phe</td>
<td>Phénanthrène</td>
</tr>
<tr>
<td>Pyr</td>
<td>Pyrène</td>
</tr>
<tr>
<td>RSDE</td>
<td>Action nationale de recherche et de réduction des rejets de substances dangereuses dans les eaux</td>
</tr>
</tbody>
</table>
1 Contexte et objectifs

L’axe IV de l’OSR4 a pour objet l’étude des sources de matières en suspensions (MES) et de contaminants organiques sur le bassin versant du Rhône. L’action IV.2 s’intéresse en particulier à l’évaluation de l’origine principale de certains contaminants organiques, éléments traces métalliques et radionucléides. Pour ce rapport nous nous focalisons principalement sur les hydrocarbures aromatiques polycycliques (HAP), puis sur les polychlorobiphényles indicateurs (PCBi).

Les HAP peuvent être naturellement introduits dans le milieu mais peuvent aussi avoir une origine anthropique. L’objectif de cette étude est de différencier les origines (naturelle, industrielle, urbaine) de ces contaminants sur le Rhône et certains de ces affluents. Pour cela, plusieurs méthodes couramment utilisées dans la littérature ont été mises en œuvre : étude des ratios de HAP, analyse des profils de distribution, et classification ascendante hiérarchique suivie d’une analyse factorielle discriminante. Les résultats de ces méthodes, appliquées aux données de concentrations en HAP dans les MES de l’OSR, sont présentés et interprétés. Enfin, la relation entre les concentrations en HAP et en PCBi est évaluée, afin de savoir si ces polluants sont produits et rejetés par des sources communes, ou au contraire, distinctes.

2 Principales sources d’émission des micropolluants dans l’environnement

2.1 Hydrocarbures aromatiques polycycliques (HAP)

Les HAP sont des composés organiques constitués d’au moins deux cycles aromatiques fusionnés (cf. Annexe 1).

Une partie des HAP présents dans l’environnement peut provenir de phénomènes naturels tels que les feux de forêt ou de prairies, ou les éruptions volcaniques, mais la majorité des apports est d’origine anthropique. On distingue deux sources majoritaires de HAP :

- **Pyrolytiques** : formés par combustion incomplète de matière organique naturelle ou anthropique (activités urbaines ou industrielles). Cette source est responsable de la majorité des émissions diffuses de HAP. Parmi les activités émettrices on peut citer le transport routier (par combustion du carburant automobile), le chauffage domestique (au bois, au charbon, au fioul ou au gaz), les industries de la fonte, de la métallurgie et de production d’énergie, les industries chimiques et activités de production de coke, produits chlorés, pâte à papier, ou encore l’incinération des déchets ménagers (INERIS, 2017).

- **Pétrogéniques** : formés à partir de produits pétroliers ou dérivés. Les émissions de ce type sont plus localisées et proviennent de rejets d’essence, d’huile, du lessivage du créosote (traitement du bois), etc.

L’importance relative des différentes sources de HAP varie localement en fonction des activités humaines prépondérantes sur le territoire considéré.

En milieu urbain, les principales sources de HAP pyrolytiques sont liées au chauffage domestique (sources locales) et au trafic automobile (source diffuse). Une fois dans l’atmosphère, ces polluants sont transportés avec les masses d’air (parfois sur de longues distances pour les composés les plus volatiles), avant de se déposer sur les sols par sédimentation. Suite à des épisodes pluvieux, les HAP
sont ensuite véhiculés par lessivage et ruissellement vers les cours d’eau où un équilibre va s’établir entre la phase aqueuse, les MES et les sédiments de surface. Les rejets d’eaux usées issues de stations d’épuration représentent également une source de HAP dans les eaux, mais ces apports tendent à diminuer avec l’amélioration des procédés de traitement (INERIS, 2017).

En milieu rural et agricole, les sources de HAP incluent entre autres l’épandage de boues résiduaires de stations d’épuration ou d’engrais de ferme. La sylviculture et d’autres cultures pérennes peuvent aussi être à l’origine de rejets de HAP d’origine naturelle (Botta et al., 2014).

En milieu industriel, les résultats issus de l’action RSDE ont montré qu’au niveau national le fluoranthène est la substance la plus quantifiée dans les eaux de rejet, suivie du naphtalène (Botta et al., 2014). Sur le bassin Rhône Méditerranée Corse, selon le Registre Français des Emissions Polluantes (IREP, 2016), en 2014 les principaux émetteurs de HAP étaient les entreprises Carbone Savoie (fabrication de matériels électriques, Vénissieux, Rhône), Saint Gobain Emaballage (fabrication de verre, Chalon sur Saône, Saône-et-Loire), ArcelorMittal (sidérurgie, Fos-sur-Mer, Bouches-du-Rhône), SGL Carbon SAS (fabrication de carbone ou d’électrographite, Passy, Haute-Savoie) et Messier Bugatti Dowty (construction aéronautique et spatiale, Villeurbanne, Rhône).

2.2 Polychlorbiphényles (PCB)

3 Présentation du réseau de suivi de l’OSR et localisation des stations

Le réseau de suivi de l’Observatoire des Sédiments du Rhône comprend plusieurs stations, dont :

- Deux stations principales situées sur le Rhône : Jons au nord, Arles au sud ;
- Quatre stations secondaires permanentes sur les affluents principaux : Arve, Saône, Isère et Durance ;
- Trois stations secondaires temporaires sur quelques affluents mineurs : Fier, Bourbre, Gier.

Ces stations ont été suivies à la fois pour les MES et les micropolluants associés. De plus, un suivi de quelques mois a été réalisé sur l’Ain et sur le Guiers en 2012, mais la durée de suivi étant courte, ces stations ont été écartées de l’interprétation pour le présent rapport. Pour plus d’informations sur le réseau de suivi de l’OSR, le lecteur est invité à consulter le livrable III.1. de l’OSR4 : Rapport sur le fonctionnement du réseau d’observation des flux (Le Bescond et al., 2017). Une carte permettant de localiser les stations du réseau de suivi de l’OSR est présentée ci-dessous (Figure 1).
Les données utilisées dans ce rapport sont issues de l’analyse d’échantillons de MES prélevés par pièges à particules (PAP) exposés par périodes successives de 15 jours (à Jons) ou un mois (sur les affluents). A Arles, les données sont issues de l’analyse d’échantillons prélevés par centrifugeuse fixe (fréquence bimensuelle) (Le Bescond et al., 2016). Le suivi des concentrations en 16 HAP dans les MES (naphtalène, acénaphthène, acénaphtylène, fluorène, phénanthrène, anthracène, fluoranthène, pyrène, benzo(a)anthracène, chrysène, benzo(b)fluoranthène, benzo(k)fluoranthène, benzo(a)pyrène, indéno(1,2,3-cd)pyrène, dibenzo(a,h)anthracène et benzo(g,h,i)pérylène) a été réalisé à Jons, à Arles, et sur quatre affluents (Saône, Arve, Bourbre et Gier) entre novembre 2011 et juin 2013.

Un récapitulatif des périodes de suivi et du nombre d’échantillons analysés pour les HAP par station est présenté sur la Figure 2.

<table>
<thead>
<tr>
<th>Station</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saône</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bourbre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gier</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 : Suivi des HAP particulaires sur les stations de l’OSR entre 2011 et 2013. Echantillonnage des MES par centrifugeuse fixe à Arles, par piège à particules sur les autres stations. Fréquence bimensuelle à Arles et à Jons, mensuelle sur les affluents. Sur les barres figure le nombre d’échantillons sur lesquels les concentrations en HAP ont été mesurées.

L’analyse des concentrations en HAP des MES a été réalisée dans le cadre du programme de l’OSR 2, qui a débuté en 2010 et a pris fin en 2013. Pour les stations permanentes d’Arles et Jons dont le suivi a commencé dès 2011, le nombre d’échantillons (27 à 30) analysés pour les HAP est donc beaucoup plus important que pour les stations secondaires dont le suivi a débuté plus tardivement ou a été interrompu (5 à 11 échantillons).
4 Caractérisation des bassins versants étudiés et description des pressions anthropiques

La caractérisation, en termes d’occupation des sols, des bassins versants du Rhône à Jons et à Arles, de la Saône, de l’Arve, de la Bourbre, du Gier, du Fier et de l’Isère a été réalisée à l’aide du logiciel Corinne Land Cover. Les résultats sont présentés sur la Figure 3.

Figure 3 : Caractérisation des pressions (anthropiques et naturelles) pour les bassins versants des différentes stations du réseau de suivi de l’OSR.
La station d’Arles est située à l’exutoire du bassin du Rhône, et intègre donc les apports de l’ensemble des affluents. Le bassin versant est essentiellement rural (75 % de sa surface est occupée par les activités agricoles et les forêts), mais inclut de grosses agglomérations telles que Lyon, Valence ou Avignon.

Le bassin versant drainé par le Rhône à Jons possède 66 % de sa surface occupée par les forêts et les activités agricoles. C’est donc un bassin essentiellement rural, les zones urbaines représentant 4 %, et les zones industrielles moins de 1 % de la surface totale.

Le bassin de la Saône est le plus rural des sites étudiés, avec 92 % de sa surface en terres agricoles et en forêt. Les activités industrielles y sont très réduites et les espaces urbains représentent seulement 4 % du bassin. C’est donc un bassin essentiellement agricole.

Les bassins versant de la Bourbre et du Gier possèdent tous deux plus de 80 % de leur surface en forêt en terres agricoles, mais ils se distinguent par l’importance des zones urbaines (8 %) et industrielles (3 %), soit 2 à 3 fois plus que sur les sites précédents.

L’Arve et l’Isère se distinguent par l’importance des surfaces nues (essentiellement des glaciers, des roches nues ou de la végétation clairsemée), mais l’Arve possède près de 7 % de sa surface en zone urbaine, ce qui en fait l’un des plus urbanisé après la Bourbre et le Gier, alors que l’Isère n’en possède que 2.5 %.

En résumé, la Bourbre et le Gier sont les territoires les plus industrialisés, et les plus urbanisés, suivis par l’Arve, et le Fier. La Saône est le bassin versant le plus agricole. Les bassins du Rhône à Jons et de l’Isère sont essentiellement ruraux, avec une petite partie de leur surface dédiée aux zones urbaines.

Ces caractéristiques seront utiles pour rechercher les sources de polluants en fonction des spécificités de chaque bassin versant.

5 Evaluation des sources de HAP

5.1 Méthode des ratios de diagnostic

Les conditions de formation des HAP (température, ...) diffèrent en fonction des sources d’émission, et aboutissent à des composés de stabilité thermodynamique variable. Chaque source présente donc une empreinte de contamination caractéristique qu’il est possible de distinguer. La méthode des ratios consiste à calculer des rapports de concentration entre un composé parent et ses formes alkylées, ou entre isomères provenant de sources distinctes. Plusieurs ratios / outils de diagnostic existent dans la littérature. Des rapports Phe/Ant > 10, Fla/Pyr <1 et Chy/BaA >1 seraient indicateurs de contaminations d’origine pétrogénique, tandis que des rapports respectivement <10, ≥1 et <1 marqueraient une origine pyrolytique (Budzinski et al., 1997; Zeng et Vista, 1997; Doong et Lin, 2004). Une liste des ratios utilisés et des références bibliographiques associées est disponible en Annexe 2. Ces ratios ont été calculés à partir des prélèvements de MES sur les différentes stations de l’OSR et sont présentés sur la Figure 4.
Figure 4 : Calculs de ratios de HAP dans les MES et évaluation des sources aux différentes stations de l’OSR. Phe = phénanthrène, Ant = anthracène, Fla = fluoranthène, Pyr = pyrène, Chy = chrysène, BaA = benzo(a)anthracène.
A partir de l’interprétation du ratio Phe/Ant, on déduit que les HAP des MES d’Arles, de la Bourbre et du Gier seraient principalement d’origine pyrolytique tandis que ceux des MES de Jons, de la Saône et de l’Arve proviendraient à la fois de sources pyrolytiques et pétrogéniques.

A partir du rapport Fla/Pyr, on conclut que les HAP d’Arles et de Jons auraient une origine mixte tandis que ceux de la Saône, de la Bourbre, de l’Arve et du Gier seraient d’origine pyrolytique.

Enfin, à partir du rapport Chy/BaA on pourrait conclure à une origine principalement pétrogénique des HAP sur l’ensemble des stations.

Les résultats issus de ces ratios sont difficilement interprétables car ils aboutissent à des conclusions parfois contradictoires (Tableau 1).

Tableau 1 : Récapitulatif de l’origine des HAP quantifiés dans les MES des stations de l’OSR, déterminée par la méthode des ratios. Phe = phénanthrène, Ant = anthracène, Fla = fluoranthène, Pyr = pyrène, Chy = chrysène, BaA = benzo(a)anthracène.

<table>
<thead>
<tr>
<th>Station</th>
<th>Ratio Phe/Ant</th>
<th>Ratio Fla/Pyr</th>
<th>Ratio Chy/BaA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arles</td>
<td>Pyrolytique</td>
<td>Mixte</td>
<td>Pétrogénique</td>
</tr>
<tr>
<td>Jons</td>
<td>Mixte</td>
<td>Mixte</td>
<td>Pétrogénique</td>
</tr>
<tr>
<td>Saône</td>
<td>Mixte</td>
<td>Pyrolytique</td>
<td>Pétrogénique</td>
</tr>
<tr>
<td>Arve</td>
<td>Mixte</td>
<td>Pyrolytique</td>
<td>Pétrogénique</td>
</tr>
<tr>
<td>Bourbre</td>
<td>Pyrolytique</td>
<td>Pyrolytique</td>
<td>Pétrogénique</td>
</tr>
<tr>
<td>Gier</td>
<td>Pyrolytique</td>
<td>Pyrolytique</td>
<td>Pétrogénique</td>
</tr>
</tbody>
</table>

Dans la littérature, des réserves ont été émises sur l’utilisation du rapport Chy/BaA (Botta et al., 2014), qui semble être moins spécifique que les deux autres, certains auteurs l’identifiant comme un marqueur d’origine pyrolytique (Rocher et Moilleron, 2007) ou au contraire, pétrogénique (Doong et Lin, 2004). Cela pourrait expliquer les résultats contradictoires obtenus avec cet indicateur.

Pour aller plus loin, d’autres ratios de diagnostic ont donc été utilisés et figurés sur des représentations croisées (Figure 5). Il s’agit des ratios :

- \(\text{Ant}/(\text{Ant} + \text{Phe}) \) (Liu et al., 2008),
- \(\text{Fla}/(\text{Fla} + \text{Pyr}) \) (De La Torre-Roche et al., 2009),
- \(\text{BaA}/(\text{BaA} + \text{Chy}) \) (Yunker et al., 2002 ; Akyüz et Çabuk, 2008),
- \(\text{IdP}/(\text{IdP} + \text{BghiP}) \) (Yunker et al., 2002).
Figure 5 : Calculs de ratios de HAP dans les MES et évaluation des sources aux différentes stations de l’OSR. Phe = phénanthrène, Ant = anthracène, Fla = fluoranthène, Pyr = pyrène, Chy = chrysène, BaA = benzo(a)anthracène, IdP = Indéno(1,2,3-cd)pyrène, BghiP = Benzo(g,h,i)pérylène.
D’après les ratios utilisés, la majorité des HAP quantifiés sur l’ensemble des sites proviendraient principalement du trafic routier (ratio \(\text{BaA}/(\text{BaA}+\text{Chy}) \)) et de la combustion de charbon ou de bois en lien avec le chauffage résidentiel (ratios \(\text{Fla}/(\text{Fla}+\text{Pyr}) \) et \(\text{IdP}/(\text{IdP}+\text{BghiP}) \)). Deux à trois échantillons d’Arles (selon le ratio considéré) auraient une signature caractéristique de la combustion de pétrole.

D’après le ratio Phe/(Ant+Phe), une partie des échantillons de Jons et de l’Arve auraient des HAP d’origine pétrogenique (Figure 5A). Toutefois, ces résultats vont à l’encontre des conclusions précédentes, et sont à interpréter avec précaution car selon Botta et al. (2014) ce ratio serait sensible à la photodégradation et aux changements environnementaux, ce qui le rend moins fiable.

En conclusion, l’étude des ratios de diagnostic montre que sur l’ensemble des sites étudiés, les principaux facteurs d’émission de HAP sont le chauffage résidentiel et le trafic routier. À Jons et sur l’Arve s’ajoute, dans une moindre mesure, la combustion de pétrole.

Ces résultats sont intéressants en première approximation, mais restent très généraux. Pour aller plus loin dans cette analyse, l’évolution au cours du temps de la proportion relative des différents HAP analysés dans les MES a été étudiée.

5.2 Evolution de la distribution des HAP aux différentes stations de L’OSR

L’évolution des profils de distribution des HAP au cours du temps sur les différentes stations peut permettre d’identifier l’origine probable des polluants. Cette méthode a été utilisée par Botta et al. (2014) et Bourcereau et al. (2006) pour distinguer des pressions urbaines, industrielles ou agricoles.

Par ailleurs, selon Rocher et Moilleron (2007), les rejets pétrogéniques issus de carburants automobiles (gasoil et super par exemple), d’huiles lubrifiantes ou de débris de pneus sont caractérisés par une prédominance des HAP légers (2 à 3 cycles aromatiques), tandis que les HAP pyrolytiques sont majoritairement composés de 4 cycles (cf. Annexe 1).

Les résultats de la méthode des profils de distribution, appliquée aux stations de l’OSR sont présentés sur la Figure 6. Sur ces graphiques, les 16 HAP sont classés du bas vers le haut, des plus légers (2 cycles) aux plus lourds (6 cycles).
Figure 6 : Évolution temporelle de la distribution des 16 HAP dans les MES sur les différentes stations de l’OSR. Dates des changements remarquables entourées en rouge.

Sur toutes les stations, les HAP lourds possédant plus de 3 cycles aromatiques prédominent, ce qui confirme une origine pyrolytique de ces polluants (cf. Annexe 1). Partout, les composés les plus abondants sont le fluoranthène, le pyrène, le phénanthrène, et le benzo(b)fluoranthène. Toutefois, quelques différences apparaissent entre les sites.

A Arles, le 3 avril 2012, une forte teneur en anthracène a été mesurée. En l’absence d’une erreur analytique (toujours possible), ceci peut indiquer une contamination par une source pétrogénique locale, l’anthracène étant un constituant du fioul et de l’essence (INERIS, 2017).

A Jons, les échantillons prélevés le 28 février 2012 et le 19 février 2013 présentent une proportion en phénanthrène environ deux fois plus élevée qu’en moyenne sur la période étudiée. Le phénanthrène ne fait pas partie des substances de l’action RSDE, il est donc difficile de connaître les sources d’émission industrielles de ce HAP. Toutefois, selon l’INERIS (2017), sa présence dans l’environnement est essentiellement due à la combustion incomplète de composés organiques et de combustibles fossiles.
Sur la Saône et l’Arve, les profils de distribution de HAP varient très peu, et ces variations sont le plus souvent liées à une augmentation ou une diminution de la proportion des HAP les plus légers (naphtalène, acénaphylène, acénaphthène, fluorène et phénanthrène).

Sur la Bourbre et sur le Gier, les profils de distribution sont extrêmement stables, et peuvent être considérés comme constants sur la période étudiée, qui est toutefois relativement courte (cf. Figure 2). La Bourbre se distingue de tous les autres sites par une proportion en HAP légers (2 à 3 cycles) plus faible que sur les autres stations : < 10 % en moyenne (Figure 7).

![Figure 7 : Proportions relatives moyennes des HAP dans les MES en fonction du nombre de cycle aromatiques sur les stations de suivi de l’Observatoire des Sédiments du Rhône. Période novembre 2011 – juillet 2013.](image)

Par la suite, nous avons tenté de retrouver l’origine des HAP quantifiés pour chacun des échantillons de MES prélevés sur les différentes stations, à partir de l’abondance relative des composés individuels. Pour cela, une démarche statistique incluant une classification ascendante hiérarchique (CAH) suivie d’une analyse factorielle discriminante (AFD) a été mise en œuvre.

5.3 Evaluation des sources de HAP par classification ascendante hiérarchique (CAH) et analyse factorielle discriminante (AFD)

La classification ascendante hiérarchique (CAH) a pour but de regrouper des objets ou des individus en un certain nombre de classes ou clusters. Initialement, chaque individu forme une classe et il y a donc autant de classes que d’individus. Par itérations successives, la CAH va permettre de diminuer le nombre de classes en regroupant les individus sur la base d’un critère d’agrégation donné (le plus souvent la distance euclidienne : méthode de Ward). A la suite de plusieurs itérations, le processus aboutit à la réalisation d’un arbre de classification (dendrogramme), à partir duquel on peut définir le nombre de clusters le plus approprié pour regrouper les individus.

Cette méthode a été réalisée à l’aide du logiciel XLStat (méthode de Ward) et appliquée aux échantillons de MES prélevés et analysés sur les stations de l’OSR. L’échantillon du 3 avril prélevé à Arles, qui présentait une teneur en anthracène douteuse (10 fois supérieure aux teneurs habituelles, cf. §5.2 et Figure 6) a été exclu.
5.3.1 Constitution des groupes d’échantillons

Avant la mise en œuvre de la classification ascendante hiérarchique, les teneurs en HAP individuels mesurées dans les différents échantillons de MES ont été transformées en abondances relatives par rapport à la somme, afin de s’affranchir de l’influence de la concentration. Ces abondances relatives sont exprimées en pourcentages.

Le dendrogramme des échantillons obtenu après la CAH est présenté sur la Figure 8.

![Dendrogramme](image)

Figure 8 : Classification ascendante hiérarchique appliquée aux échantillons de MES prélevés sur les stations de l’OSR, à partir des profils de distribution des HAP. Quatre clusters (groupes d’échantillons) sont définis (ligne pointillée).

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>Cluster 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arles</td>
<td>13</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Jons</td>
<td>19</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Saône</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Arve</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Bourbre</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Gier</td>
<td>4</td>
<td>1</td>
<td>_</td>
</tr>
</tbody>
</table>

| Nb total d’échantillons | 42 | 9 | 17 | 23 |

A l’issue de la CAH, les échantillons ont été regroupés en 4 clusters, incluant chacun des échantillons prélevés sur différentes stations (Tableau 2). Le cluster 1 regroupe le plus grand nombre d’échantillons (42).

La CAH est intéressante pour regrouper des échantillons, mais elle ne donne aucune information sur les caractéristiques différenciant les clusters. C’est pourquoi elle est souvent suivie d’une analyse factorielle discriminante (AFD) qui va permettre, d’une part, de vérifier la fiabilité des groupes constitués, et d’autre part, de mettre en évidence leurs spécificités.

5.3.2 Validation de la CAH par AFD et caractérisation des groupes

L’analyse factorielle discriminante (AFD) est généralement utilisée pour vérifier si les groupes (ici les clusters) auxquels appartiennent des observations (ici les échantillons) sont bien distincts, identifier les caractéristiques des groupes sur la base de variables explicatives (ici les abondances relatives en HAP individuels) et prédire le groupe d’appartenance pour une nouvelle observation. Cette dernière fonctionnalité sera utilisée ici comme critère de validation des clusters obtenus par la CAH.

L’AFD a donc été mise en œuvre sur les échantillons de l’OSR, préalablement associés au cluster approprié (identifié précédemment par la CAH). Les variables quantitatives sont les proportions relatives des 16 HAP individuels. La variable qualitative correspond aux clusters issus de la CAH.

La matrice de confusion obtenue suite à l’AFD (Tableau 3) montre que 96 % des échantillons ont été bien classés dans les clusters identifiés par la CAH. Ce résultat est satisfaisant et montre que les regroupements effectués par CAH sont fiables. Les clusters sont donc conservés tels quels pour la suite de l’AFD.
Tableau 3 : Matrice de confusion obtenue après AFD, à partir de quatre clusters (variables explicatives) issus d’une classification ascendante hiérarchique sur les échantillons de l’OSR, sur la base des proportions relatives des 16 HAP individuels (variables quantitatives) dans les MES.

<table>
<thead>
<tr>
<th></th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>Cluster 4</th>
<th>Total</th>
<th>% correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>42</td>
<td>98 %</td>
</tr>
<tr>
<td>Cluster 2</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>100 %</td>
</tr>
<tr>
<td>Cluster 3</td>
<td>3</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>17</td>
<td>82 %</td>
</tr>
<tr>
<td>Cluster 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>23</td>
<td>100 %</td>
</tr>
<tr>
<td>Total</td>
<td>44</td>
<td>9</td>
<td>14</td>
<td>24</td>
<td>91</td>
<td>96 %</td>
</tr>
</tbody>
</table>

Une fois la fiabilité des groupes vérifiée, nous devons identifier leurs spécificités.

Le graphique des corrélations facteurs-variables obtenu grâce à l’AFD est présenté sur la **Figure 9**.

![Figure 9: Graphique des corrélations variables - facteurs obtenus après AFD.](image1)

Les facteurs 1 et 2 retenus expliquent 91 % de la variabilité. L’axe 1 est principalement expliqué par la proportion de phénanthrène, tandis que l’axe 2 est principalement expliqué par le pourcentage de fluoranthène et de pyrène. Par ailleurs, on voit que l’axe 1 oppose d’une part, les HAP les plus légers (naphtalène, acénaphytène, acénaphthène, fluorène) et d’autre part, les HAP les plus lourds (benzo(g,h,i)pérylène, indéno(1,2,3-cd)pyrène, benzo(a)pyrène, benzo(k)fluoranthène, etc.).

Le graphique des observations/échantillons est présenté sur la **Figure 10**.
Figure 10 : Graphique des observations obtenu après AFD sur les échantillons de MES de l’OSR analysés pour les HAP et séparation des clusters issus de la classification ascendante hiérarchique.

L’analyse du graphique des observations montre que l’on arrive bien à différencier les échantillons des quatre clusters. Les clusters 3, 1 et 4 sont bien séparés sur l’axe 1, ce qui suggère une augmentation croissante des HAP les plus lourds, du cluster 3 vers le cluster 4. Les échantillons du cluster 2, proches de l’axe 2, se différencieraient par une proportion plus importante de fluoranthène et de pyrène.

Les résultats de l’AFD ont été utilisés pour estimer le profil de distribution (% moyen des HAP individuels) caractérisant chacun des clusters. Les résultats sont présentés sur la Figure 11.
L’analyse des profils de distribution confirme les observations précédentes. Le cluster 4 se différencie par une proportion plus importante de HAP les plus lourds possédant 5 à 6 cycles aromatiques (44 %, soit 1,2 à 1,4 fois plus que les autres groupes), et par une contribution plus faible des HAP les plus légers (7 %).

Le cluster 3 se caractérise au contraire par une proportion plus importante en HAP légers, notamment en phénanthrène (15 %, soit 1,5 à 3 fois plus que les autres groupes).

Le cluster 2 se caractérise par une contribution plus élevée des HAP à 4 cycles (56 %), et notamment du fluoranthène (20 %) et du pyrène (17 %), soit environ 1,2 fois plus que les autres groupes.

Le cluster 1 regroupe tous les autres échantillons, et représente une classe intermédiaire entre les trois autres clusters.
En conclusion, les différences de distribution des HAP caractéristiques identifiés grâce à l’AFD (phénanthrène, fluoranthène, pyrène, et composés à 5-6 cycles aromatiques) sont de l’ordre de 15 à 40 % entre les clusters, et permettent de bien différencier les échantillons de MES.

5.3.3 Evolution au cours du temps des teneurs en HAP et estimation des sources potentielles

L’évolution de la somme des teneurs en HAP des MES est présentée sur la Figure 12, pour chacune des stations. Les échantillons de chaque cluster sont identifiés par des couleurs différentes.

Figure 12 : Evolution au cours du temps des teneurs en HAP particulières sur les stations de l’OSR et identification des clusters d’échantillons. Barres rose = périodes de crue. Barre verte = chasses de barrage de juin 2012.
A Arles, à Jons et sur l’Arve, les échantillons du cluster 4 (riche en HAP lourds) correspondent exclusivement à des prélèvements en crue ou lors des chasses de barrage. Il pourrait s’agir de sédiments anciens remobilisés, ce qui expliquerait la proportion plus faible en HAP légers (plus facilement dégradés) de ces échantillons.

Toutefois, sur la Bourbre et sur la Saône, le cluster 4 regroupe autant d’échantillons prélevés en crue qu’en étiage. Ces échantillons peuvent avoir été classés dans le cluster 4 en raison d’une proportion plus élevée en HAP lourds tels que le benzo(a)pyrène, le benzo(b)fluoranthène et benzo(a)anthracène (Figure 11), caractéristiques des combustions incomplètes (Bourcereau et al., 2006 ; Botta et al., 2014 ; INERIS, 2017). Sur la Bourbre, la station de prélèvement est située à moins de 5 km de l’aéroport de Lyon Saint-Exupéry (cf. Annexe 3), dont l’activité pourrait donc expliquer la présence de HAP lourds provenant de la combustion de carburant. Sur la Saône en revanche, la station de prélèvement se situe dans une zone principalement résidentielle, qui ne permet pas d’expliquer clairement l’origine d’hydrocarbures plus lourds. Ceux-ci pourraient provenir du trafic routier ou du chauffage résidentiel.

Sur toutes les stations, le cluster 3 correspond exclusivement à des échantillons prélevés en étiage, sauf à Jons, où il y a aussi 3 échantillons des chasses de 2012. Ce cluster pourrait correspondre à des particules plus récentes, dont les HAP les plus légers se sont moins dégradés. Ce sont en effet des échantillons sur lesquels le naphtalène, le fluorène et surtout le phénanthrène ont été quantifiés plus fréquemment.

Le cluster 2 (constitué d’échantillons plus riches en fluoranthène et en pyrène) est surtout représenté à Arles. Selon l’INERIS (2017) le fluoranthène fait partie des HAP prédominants dans les émissions des incinérateurs d’ordures ménagères. Or la station de prélèvement d’Arles est localisée au niveau du pont de Trinquetaille, à moins de 3 km de l’usine d’incinération d’ordures ménagères S.I.L.I.M située sur les berges du Rhône (Figure 13). Les émissions des incinérateurs ont lieu dans l’air, mais selon Villenave et al. (2013) la vitesse de dépôt des particules atmosphériques est d’environ 173 m/j, ce qui est suffisant pour qu’elles se redéposent avant la station de prélèvement d’Arles. En effet, selon l’Institut de Veille Sanitaire les valeurs maximales de retombées autour des incinérateurs sont principalement retrouvées à des distances inférieures à 2 km (Fabre et al., 2008). Une étude menée sur l’incinérateur de Saint-Pierre d’Oléron a également montré que l’impact des retombées sédimentables (de dioxines et furannes) était le plus fort à proximité de la source d’émission et pouvait être mesuré jusqu’à au moins 10 km de distance (Caini, 2010). Par ailleurs, les événements pluvieux accélèrent cette sédimentation des particules vers le sol et les cours d’eau. Une partie des HAP quantifiés à Arles pourrait donc être liée à l’activité de l’incinérateur.
Figure 13 : Localisation de la station de prélèvement de MES à Arles et de l’incinérateur d’ordures ménagères S.I.L.I.M (Capture d’écran de Géoportail).

6 Evaluation des sources de PCBi : étude des relations HAP-PCBi

Contrairement aux HAP, il n’existe pas de ratios de diagnostic permettant d’évaluer la provenance des PCBi. D’autres méthodes ont donc été développées.

Selon Wolska et al. (2014), la mise en évidence d’une relation entre les teneurs en HAP et les PCB suggérerait une origine commune, et les PCB proviendraient donc principalement de dépôts atmosphériques. Dans le cas contraire, il faudrait plutôt envisager une origine mixte des PCB, et aux dépôts atmosphériques s’ajouteraient des effluents urbains ou des rejets industriels. Les relations entre les teneurs en HAP et en PCBi des MES ont été étudiées sur chacune des stations, à l’aide de régressions linéaires. Les résultats sont présentés dans le Tableau 4.

Tableau 4 : Coefficients de corrélation (R^2) entre la somme des concentrations en HAP et la somme des concentrations en PCBi aux différentes stations étudiées. n = nombre d’échantillons.

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arles</td>
<td>0,04</td>
<td>27</td>
</tr>
<tr>
<td>Jons</td>
<td>0,01</td>
<td>34</td>
</tr>
<tr>
<td>Saône</td>
<td>0,00</td>
<td>9</td>
</tr>
<tr>
<td>Bourbre</td>
<td>0,01</td>
<td>14</td>
</tr>
<tr>
<td>Gier</td>
<td>0,00</td>
<td>5</td>
</tr>
<tr>
<td>Arve</td>
<td>0,29</td>
<td>6</td>
</tr>
</tbody>
</table>

Les résultats montrent qu’il n’y pas de relation entre les sommes des teneurs en HAP et en PCBi, quelle que soit la station considérée. Les principales sources de PCBi sur le bassin du Rhône concerneraient donc principalement les effluents industriels.
7 Conclusion

Nos travaux montrent qu’il est difficile d’évaluer précisément les sources de HAP et PCBi associés aux MES des différentes stations de l’OSR. Toutefois, les différentes méthodes utilisées pour la famille des HAP suggèrent que ces polluants proviendraient essentiellement de combustions incomplètes, en lien avec le trafic routier et le chauffage résidentiel. Sur la Bourbre, l’activité de l’aéroport Saint-Exupéry pourraient expliquer la signature particulière de cet affluent, caractérisée par une proportion plus importante de HAP lourds. A Arles, la proximité de l’incinérateur d’ordures ménagères (S.I.L.I.M) pourrait occasionner une pollution caractérisée par la présence de fluoranthène. Sur les autres sites, les recherches doivent être approfondies. Pour cela, d’autres types de HAP pourraient être recherchés. Par exemple, de fortes proportions de HAP alkylés et/ou soufrés pourraient indiquer une origine pétrogénique, de même que des marqueurs tels que les BTEX (benzène, toluène, éthylbenzène, xylène). Pareillement, les sources pyrolytiques pourraient être différenciées en fonction du degré de présence des HAP ramifiés. Les feux naturels se réalisant à plus faible température que les pyrolyses anthropiques, la présence de ces HAP ramifiés devrait y être plus faible (Botta et al., 2014).

Concernant les PCBi, les résultats d’une analyse comparative des concentrations dans les MES avec les HAP suggèrent une origine principalement liée aux rejets industriels.
Bibliographie

Annexe 1. Structure des différents HAP

Naphtalène

Fluorène

Fluoranthène

Acénaphtène

Phénanthrène

Pyrène

Acénapthylène

Anthracène

Benzo(a)anthracène

Chrysène

Benzo(a)pyrène

Benzo(g,h,i)pérolène

Benzo(b)fluoranthène

Indéno(1,2,3-cd)pyrène

Benzo(k)fluoranthène

Dibenzo(a,h)anthracène
Annexe 2. Ratios de diagnostic utilisés pour l’estimation des sources de HAP

<table>
<thead>
<tr>
<th>Valeur</th>
<th>Source</th>
<th>Référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe/Ant</td>
<td></td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>Pyrolytique</td>
<td>Budzinski et al. (1997)</td>
</tr>
<tr>
<td>>15</td>
<td>Pétrogénique</td>
<td></td>
</tr>
<tr>
<td>Fla/Pyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1</td>
<td>Pyrolytique</td>
<td>Doong et Lin (2004)</td>
</tr>
<tr>
<td><1</td>
<td>Pétrogénique</td>
<td></td>
</tr>
<tr>
<td>Chy/BaA</td>
<td></td>
<td></td>
</tr>
<tr>
<td><1</td>
<td>Pyrolytique</td>
<td>Zeng et Vista (1997)</td>
</tr>
<tr>
<td>>1</td>
<td>Pétrogénique</td>
<td></td>
</tr>
<tr>
<td>Fla/(Fla + Pyr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><0,4</td>
<td>Pétrogénique</td>
<td>De La Torre-Roche et al. (2009)</td>
</tr>
<tr>
<td>0,4 – 0,5</td>
<td>Combustion de pétrole</td>
<td></td>
</tr>
<tr>
<td>>0,5</td>
<td>Combustion de bois, charbon, végétaux</td>
<td></td>
</tr>
<tr>
<td>BaA/(BaA + Chy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,2 – 0,35</td>
<td>Combustion de charbon</td>
<td>Akyüz et Çabuk (2008)</td>
</tr>
<tr>
<td>>0,35</td>
<td>Trafic routier</td>
<td></td>
</tr>
<tr>
<td><0,2</td>
<td>Pétrogénique</td>
<td>Yunker et al. (2002)</td>
</tr>
<tr>
<td>>0,35</td>
<td>Combustion</td>
<td></td>
</tr>
<tr>
<td>IdP/(IdP + BghiP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><0,2</td>
<td>Pétrogénique</td>
<td>Yunker et al. (2002)</td>
</tr>
<tr>
<td>0,2-0,5</td>
<td>Combustion de pétrole</td>
<td></td>
</tr>
<tr>
<td>>0,5</td>
<td>Combustion de bois, charbon, végétaux</td>
<td></td>
</tr>
<tr>
<td>Ant/(Ant + Phe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><0,1</td>
<td>Pétrogénique</td>
<td>Liu et al. (2008)</td>
</tr>
<tr>
<td>>0,1</td>
<td>Pyrolytique</td>
<td></td>
</tr>
</tbody>
</table>
Annexe 3. Localisation précise des stations de prélèvement de l’Observatoire des sédiments du Rhône et sites industriels proches

Toutes les captures d’écran ci-dessous proviennent du site Géoportail (http://www.geoportail.gouv.fr/)

Le Gier