

Ed TOPP

Chaire d'excellence ANR/INSERM, Programme Prioritaire de

Recherche: Antibiorésistance

Directeur de Recherche, UMR Agroécologie, INRAE, Université de

Bourgogne, Université de Bourgogne Franche-Comté

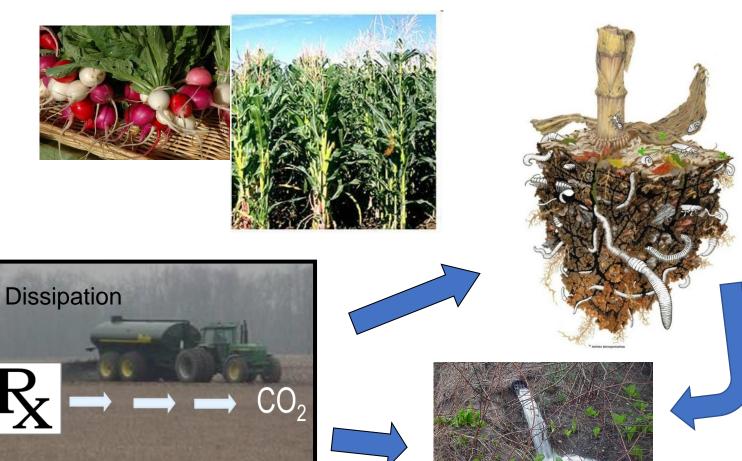
ed.topp@inrae.fr

Antibiotiques [antibacterien]

- Naturel, semi-synthétique, synthétique
 - ✓ Par exemple, Pen et dérivés, Fluoroquinolones.
 - ✓ Conçus pour être efficaces chez une personne ou un animal Absorption, distribution, métabolisme et excrétion.
 - ✓ Non toxiques pour l'hôte.
 - > Cela limite donc la gamme probable d'effets non ciblés.
 - ✓ Large gamme de propriétés, stabilité, caractère adsorbant, charge, et cible chez les bactéries.
 - > Ce n'est pas « une » chose, il faut considérer au cas par cas.
 - ➤ Le (co)métabolisme est sans doute le principal moteur de la dissipation environnementale.

Voies d'entrée des antibiotiques [et autres molecules pharmaceutiques] dans les sols agricoles

- Excréments comme amendements du sol.
 - ✓ Lisier, fumier, boues d'épuration.
- Les antibiotiques comme pesticides dans la production agricole
 - ✓ Eg. Streptomycine et oxytetracycline pour traiter des maladies de tomate
- Irrigation avec des effluents d'eaux usées
 - ✓ La charge d'antibiotiques va varier en fonction du degré de traitement


Produits pharmaceutiques dans les boues d'épuration

(µg/kg) Triclocarban

Triclocarban	6030	Amlodipine	120	Atorvastatin	15.1
Ciprofloxacin	5870	Norverapamil	94.7	Cotinine	14.8
Triclosan	4680	Carbamazepine	94.3	Codeine	14.6
Norfloxacin	1750	Fluoxetine	89.8	Naproxen	14
Ofloxacin	1068	Valsartan	76.5	Hydrocodone	11
Diphenhydramine	781	Verapamil	70.2	Diltiazem	10.1
Sertraline	497	Clarithromycin	67.4	Enrofloxacin	10.1
Miconazole	477	Norfluoxetine	59.6	Gemfibrosil	7.89
Amitriptyline	448	Anhydrotetracycline	55.8	DEET	6.89
4-Epitetracycline	386	Doxycycline	42.4	Erythromycin-H ₂ O	4.06
Tetracycline	341	Cimetidine	42.1	Ranitidine	3.26
Azithromycin	213	Digoxigenin	38.1	Propoxyphene	2.9
Ibuprofen	167	Propranolol	35.4	Atenolol	2.88
Triamfarene	153	Anhydrochlortetracycline	32.9	Benztropine	2.46
Amphetamine	147	10-OH-amitriptyline	23.3	Desmethyldiltiazem	2.05
Paroxetine	130	Thiabendazole	16.5	Diazepam	0.845

Comprendre les risques, quelles sont les questions clés ?

Questions clés

 L'exposition aux antibiotiques augmente-t-elle l'abondance des gènes de résistance aux antibiotiques ?

 L'exposition aux antibiotiques augmente-t-elle l'abondance d'éléments génétiques mobiles ?

Les risques potentiels

Si le réservoir ou la mobilité des gènes de résistance aux antibiotiques dans les systèmes de production agricole augmente,

le risque de transmission à l'homme par le biais d'aliments d'origine végétale

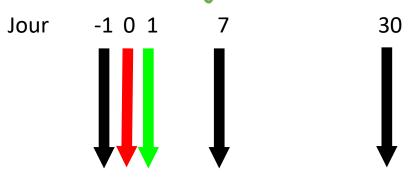
ou de contamination des ressources en eau est potentiellement plus élevé.

Quel impact les antibiotiques contenus dans les engrais d'origine fécale ont-ils sur les procaryotes du sol ?

- Les boues d'épuration et les fumiers sont des matrices extrêmement complexes.
 - ✓ Matière organique, nutriments inorganiques.
- Vaste gamme de micropolluants organiques.
- · Métaux.
- Microbiologie entérique, microbiologie des procédés.
- → Impossible de distinguer l'impact direct d'un constituant sur la microbiologie des sols.

Étude d'exposition à long terme aux antibiotiques à la ferme d'AAC en Ontario

- Petites parcelles répliquées
- Application printanière annuelle de divers mélanges de médicaments simulant ce qui pourrait être transmis par le fumier ou les boues d'épuration (ou les eaux usées recyclées)



Impact des antibiotiques sur la microbiologie des sols, procédure annuelle

échantillonnage du sol: avant l'application, 7, 30 ajout d'antibiotiques [0, 0.1, 10 mg/kg]

semis du soja

Printemp [Juin]

Automne [Octobre]

Traitements [0, 0.1 mg/kg sol, 10 mg kg/sol]

- Sulfamethazine + tylosin + chlortetracycline [1999]
- Erythromycin + clarithromycin + azithromycin [2010]
- Lincomycin, spectinomycin
- Ciprofloxacin + norfloxacin
- Ceftiofur + cefotaxime + cefalexin
- Zinc bacitracin
- Monensin
- Ivermectin
- In Bacitracin + Monensin + Ivermectin

Un exemple.. les macrolides.. Azithromycine + clarithromycine + erythromycine

Science of the Total Environment 727 (2020) 138520

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Impacts of multi-year field exposure of agricultural soil to macrolide antibiotics on the abundance of antibiotic resistance genes and selected mobile genetic elements

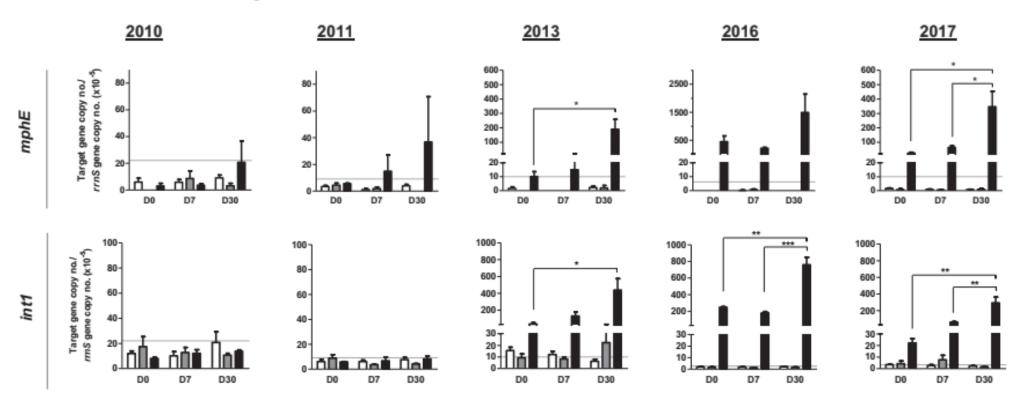
Calvin Ho-Fung Lau ^{a,1}, Yuan-Ching Tien ^a, Robert D. Stedtfeld ^{b,2}, Edward Topp ^{a,c,*}

- ^a London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- ^b Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
- ^c Department of Biology, University of Western Ontario, London, ON, Canada

PUBLIC AND ENVIRONMENTAL HEALTH MICROBIOLOGY

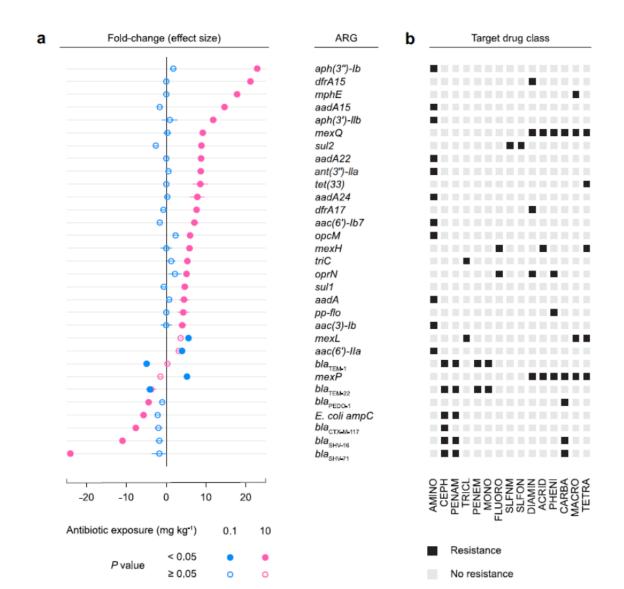
Responses of the Soil Bacterial Community, Resistome, and Mobilome to a Decade of Annual Exposure to Macrolide Antibiotics

Liam P. Brown, a,b* Roger Murray, Andrew Scott, Yuan-Ching Tien, Calvin Ho-Fung Lau, Vera Tai, Dedward Topp

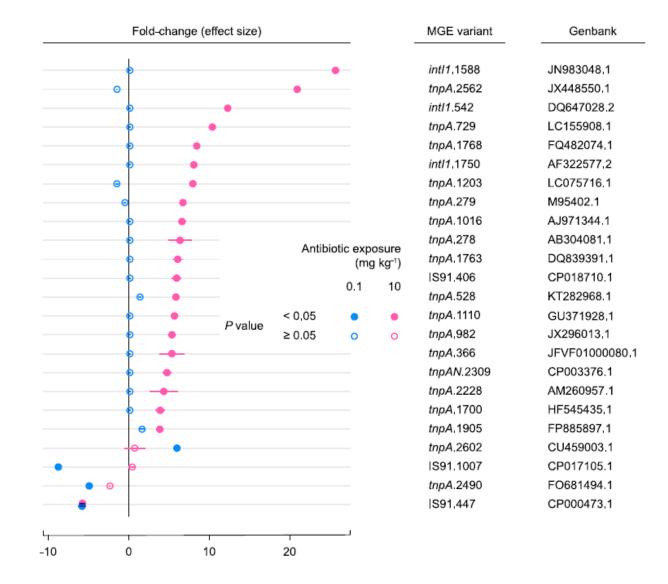

²London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada

Department of Biology, University of Western Ontario, London, Ontario, Canada

Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario, Canada



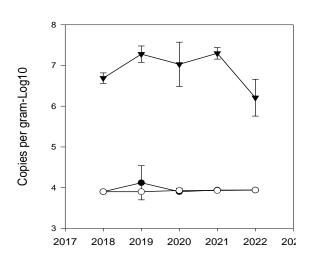
PCR quanti mphE macrolide phosphotransferase Intl1 Class 1 integrase

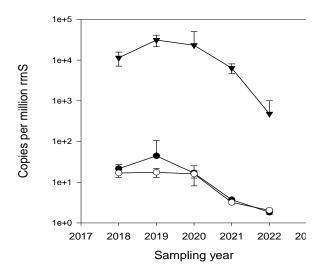


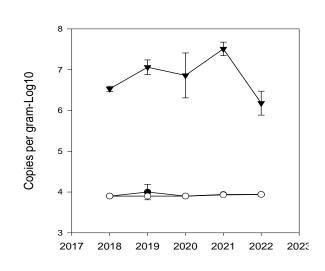
Métagénomique Gènes de resistance 10 ans d'exposition

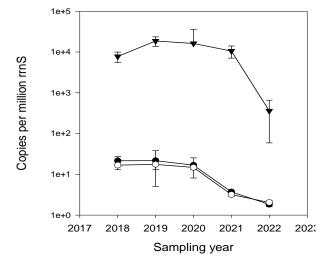
Métagénomique Eléments génétiques mobiles 10 ans d'exposition

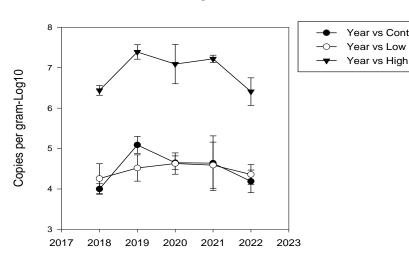
Resilience, le génie peut-il être remis dans la bouteille ?

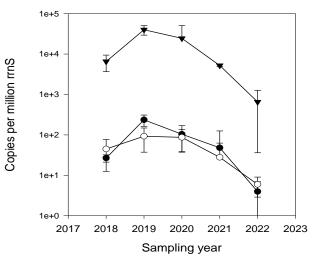

La dernière année d'application des macrolides était 2019.




Year vs Control Year vs Low


Macrolide microplots-msrE




Macrolide microplots-mphE

Macrolide microplots-int1

Conclusions

- Les gènes de résistance aux antibiotiques et les éléments génétiques mobiles peuvent augmenter en réponse à l'exposition aux antibiotiques macrolides
- Dans certains cas, l'augmentation n'est pas détectable pendant une saison ou plus. L'augmentation de l'abondance des gènes se répercute d'une année sur l'autre.
- Des informations supplémentaires sont nécessaires sur les seuils de concentrations biologiquement actives dans les sols, sur la manière dont ceux-ci varient en fonction de l'antibiotique et des propriétés du sol.

Évaluation et gestion de l'exposition aux eaux de surface et souterraines peu profondes

Ruissellement

Lessivage

Ruissellement des eaux et transport des micropolluants présents dans les boues

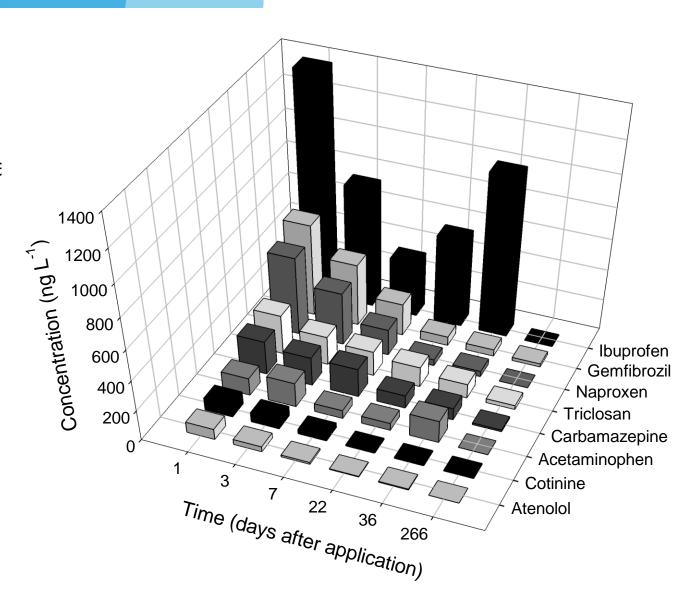
- Impact de l'application en surface par rapport au sous-sol; après le travail du sol.
- Impact de l'application de lisier par rapport à l'application de boues solides

Epandage de boues à des taux agronomiques

Epandage de boues à des taux agronomiques

Précipitations artificielles

Récupération des eaux de ruissellement pour analyse par HPLC/MS-MS



Application en surface de boue déshydratés

- Les concentrations de ruissellement sont de l'ordre du ng/l
- Perte généralement de premier ordre de micropolluants après application.
- Sauf l'acétaminophène et (surtout)
 l'ibuprofène qui ont une cinétique concave inhabituelle.
- La carbamazépine et le triclosan sont détectés après l'hiver.

Exportation totale de produits pharmaceutiques par ruissellement suite à l'application de boue déshydratés

Analyte class	Analyte	ng applied	ng exported (% applied)	
Acidic drugs	Gemfibrozil Naproxen Ibuprofen Acetaminophen	24800 315200 525600 22880	BDL 91 (0.029) 1427 (0.27) 377 (1.7)	
Neutral drugs	Carbamazepine Caffeine Cotinine	5360 28320 1440	1054 (19.7) 718 (2.5) 210 (14.6)	
Beta-Blocker drug	Atenolol	1280	372 (29.1)	
Sulfonamide antibacterial	Sulfamethoxazole	9976	51 (0.51)	
Bacteriocide	Triclosan Triclocarban	5652800 6555200	2507 (0.044) 63.4 (0.001)	

French Priority Research Programme (PPR) on antibiotic resistance:

Call for junior and senior researcher positions (chairs)

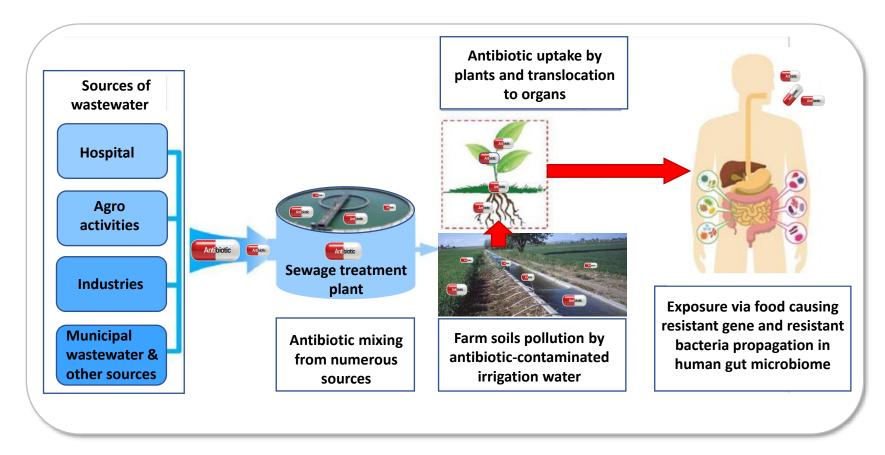
https://ppr-antibioresistance.inserm.fr/en/informations-et-communications/actualites/annonce-des-9-laureats-de-lappel-chaires-junior-et-senior-lance-par-le-ppr-antibioresistance/

Nous félicitons aujourd'hui les 9 lauréats des Chaires Junior et Senior qui vont contribuer aux efforts nationaux de lutte contre l'Antibiorésistance à travers des domaines de recherche couvrant les 4 axes du PPR et tous les écosystèmes.

- Axe 1 Émergence, transmission et dissémination de la résistance
- Axe 2 Approches des SHS, épidémiologiques et interventionnelles de l'antibiorésistance chez l'huamin, les animaux et dans l'environnement
- Axe 3 Innovations technologiques appliquées à l'antibiorésistance dans les domaines du numérique, du diagnostic et de la thérapie
- Axe 4 Stratégies thérapeutiques et préventives innovantes

Lauréat de l'appel chaire senior pour un montant de près de 1 M€:

Acronyme	Nom complet du projet	Coordinateur scientifique	Pays	Institution porteuse du projet	Montant proposé
MEHTA	Managing Environmental Hotspots and Transmission of AMR	Edward TOPP	Canada	INRAE	999 722 €



Context pour le projet MEHTA

- Antibiorésistance
- Qualité des aliments par rapport à la santé humaine
- Changement climatique et manque d'eau
- Sécurité alimentaire

• Irrigation des cultures avec les effluents des eaux usées municipales...REUT

(Gudda et al. 2020).

Participants

Ed Topp

Alain Hartmann

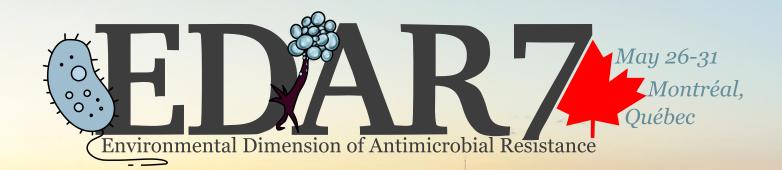
Pr Didier Hocquet

Paris-Saclay
Pierre Benoit

Collaborateurs

INRA© Dominique Patureau & Nathalie Wery Nassim Ait-Mouheb

Caroline Le Marechal


ReseauJerome Harmand [REUSE]

Marie-Cécile Ploy [PROMISE]

Tom Riley- University of Western Australia

Montréal, Québec, Canada May 26 - 31, 2024

Environmental Dimension of Antimicrobial Resistance

Mécanismes d'action

- Ribosome synthèse des protéines par exemple, les macrolides, les tétracyclines.
- Biosynthèse et intégrité de la paroi cellulaire, par exemple, les pénicillines.
- Réplication de l'ADN par exemple, les fluoroquinolones.
- Biosynthèse de molécules intermédiaires essentielles, par exemple, les sulfamides.
- Conçu pour être non toxique pour l'hôte, cela réduira les effets potentiels non ciblés sur la biologie du sol, ou l'eau.