

	PROG	RAMME
	14:0014:10	Welcome and introduction Importance of Uncertainty Assessment (UA) in Urban Drainage monitoring (F. Clemens-Meyer)
V	 14:30 15:00	Basics of UA and brief introduction to the methods applied in the UDMT (JL. Bertrand-Krajewski) Presentation of the UDMT: how it works, user interface, etc. (M. Lepot)
	 15:20 15:35 16:20 16:30 	Coffee Break Examples of UDMT application (JL. Bertrand-Krajewski and M. Lepot) Q&A Concluding remarks

(CONCLUDING REMARKS
	 Large scale monitoring has become a possibility over the last decade, due to robust sensor technology, IT technology and the availability of cheap components
	 The need for monitoring is increasing as we are faced with changing conditions (climate, increase in urban population), combined with heavier demands this asks for carefull and often costly redesign of existing systems and the evaluation of new concepts being deployed.
	 Using the notion of the presence of uncertainty in monitoring data is essential to avoid making wrong decisions in (re)design, operation and law enforcement pertaining to UD systems
	 Organisations managing UD systems will need to incorporate the knowledge and the means (personnel) to perform monitoring on the required level. Monitoring is a specalism that asks for attention

		<u>UI</u>	NCERT	AINTY		
Det	terminism				Indeterm	ination
c kr	omplete nowledge	statistical uncertainty	scenario uncertainty	qualitative uncertainty	recognised ignorance	complete ignorance
	n	neasurement uncertainty				/
3						

EXAMPLE 1 Q = S(h)U = BhU $u(Q)^{2} = u(B)^{2} \left(\frac{\partial Q}{\partial B}\right)^{2} + u(h)^{2} \left(\frac{\partial Q}{\partial h}\right)^{2} + u(U)^{2} \left(\frac{\partial Q}{\partial U}\right)^{2}$ $u(Q)^{2} = u(B)^{2} (hU)^{2} + u(h)^{2} (BU)^{2} + u(U)^{2} (Bh)^{2}$

Sample for X_1	Sample for $X_2 \cdots$	Sample for X_i	Sample for X_N	$f(X_1, X_2, \dots, X_i, \dots, X_N)$	Sample for Y
<i>x</i> _{1,1}	<i>x</i> _{2,1}	<i>x</i> _{i,1}	$x_{N,1}$		<i>y</i> ₁
$x_{1,2}$	<i>x</i> _{2,2}	<i>x</i> _{i,2}	$x_{N,2}$		<i>y</i> ₂
<i>x</i> _{1,3}	<i>x</i> _{2,3}	<i>x</i> _{i,3}	$x_{N,3}$		<i>y</i> ₃
		•			
$x_{1,r}$	$x_{2,r}$	$x_{i,r}$	$x_{N,r}$		y_r
$x_{1,M}$	$x_{2,M}$	$x_{i,M}$	$x_{N,M}$		Ум

	ertainty type Repeated measurements (Type A) Propagation of uncertainties (Type B)	Results											
	ertainty type Repeated measurements (Type A) Propagation of uncertainties (Type B)	Results											
	Repeated measurements (Type A) Propagation of uncertainties (Type B)	1-											
	Propagation of uncertainties (Type B)	100					Title						
		1 A.P. 3											
	Propagation of uncertainties (M.C.) Jnc. on cumulated values	0.9 -											
Con	īdence Interval	0.8											
	95%	0.7 -											
		0.6 -											
Imp	ni uata	> 0.5 -											
	Repeated measurements												
	Time varying quantities Z	0.4 -											
	Constant quantities A	0.3 -											
	Equation												
	Correlation matrix	0.2-											
NIM	100000	0.1 -											
	Distribution(s)			1	1				T.				
		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
	Time series						X	(M. (M)					

Progression
File upload Graphics
Before
Peak
After 0.9-
Calibration data 0.8
Time step (sec): 1 0.7
Injection data 0.6
Continuous One-shot
Concentration (g/m ³): 0
S.U. on conc. (g/m ⁴ 3): 0
Volume (m*3): 0.3
S.U. on vol. (m ² 3). 0
Dispane (m ³ a) 0.1
S.U. on dis. (m*3/s): 0 1
Results
The estimated discharge is equal to 0 Us.
Its standard uncertainty is equal to 0 L/s. Download results
Cancel Calculate

time (min)	time (s)	h_m	L_m	w_m	S_m2	Ph_m	C_m	K_m_per_s
0	0	0.45	1.2	0.35	0.42	3.1	0.1355	
1	60	0.44						3.8901E-05
2	120	0.43						3.9242E-05
5	300	0.43						1.5697E-05
10	600	0.42						1.1877E-05
15	900	0.41						1.0653E-05
20	1200	0.41						7.9896E-06
25	1500	0.4						8.0629E-06
45	2700	0.37						7.3725E-06
60	3600	0.36						6.2813E-06
75	4500	0.35						5.6389E-06
90	5400	0.34						5.2213E-06

INFILTRATION WITH UDMT O Application of type B method O Rewrite the measurement process equation $K_{S}(t) = \frac{-C}{t} Log\left(\frac{h(t)+C}{h_{0}+C}\right) \quad \text{with} \quad C = \frac{S}{P_{h}} = \frac{Lw}{2(L+w)}$ $K_{S}(t) = \frac{-Lw}{2(L+w)t} Log\left(\frac{h(t) + \frac{Lw}{2(L+w)}}{h_{0} + \frac{Lw}{2(L+w)}}\right)$ eq='-L.*w/2./(L+w)./t.*log((h+L.*w/2./(L+w))./(h0+L.*w/2./(L+w)))'

O Application of type B method
• Initial hypotheses for UA • $u(L) = u(w) = 0.005 \text{ m}$
$u(h) = u(h_0) = 0.0025 \text{ m}$ u(t) = 0.1 s
O Prepare data
 Z timetable for quantities possibly changing with time Zinfil.csv
• A timetable for constant quantities Ainfil.csv

INFILTR/	ATION WITH UDMT	مد				
C	 Application of type B I Data Z (values changing) 	methoc ng with t	l ime)			
l l	<pre>>> Z=readtimetable('Zinfil Z =</pre>	csv','D	elimiter ut_s	',';') h_m	uh_m	
	06-Jul-2022 08:01:00 06-Jul-2022 08:02:00 06-Jul-2022 08:05:00 06-Jul-2022 08:10:00	60 120 300 600	0.1 0.1 0.1 0.1	0.44 0.43 0.43 0.42	0.0025 0.0025 0.0025 0.0025	
	06-Jul-2022 08:15:00 06-Jul-2022 08:20:00 06-Jul-2022 08:25:00 06-Jul-2022 08:45:00 06-Jul-2022 09:00:00	900 1200 1500 2700 3600	0.1 0.1 0.1 0.1 0.1	0.41 0.41 0.4 0.37 0.36	0.0025 0.0025 0.0025 0.0025 0.0025	
.	06-Jul-2022 09:15:00 06-Jul-2022 09:30:00	4500 5400	0.1	0.35	0.0025	

	INFILTRATION WITH UDMT
	O Application of type B method
	○ Set
	 alpha = 0.95 (level of coverage interval)
V	 Correlation matrix initial hypothesis: no correlation between quantities
R	MatCor =
1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	

		T:ON-I		
O Appli	cation of typ	e B meth	od	
	Ks = 1.0e-04 * 0.3890 0.3924 0.1570 0.1188 0.1065 0.0799 0.0806 0.0737 0.0628 0.0564 0.0522	0.1376 0.0695 0.0278 0.0140 0.0095 0.0071 0.0058 0.0033 0.0025 0.0021 0.0018	0.1193 0.2562 0.0912 0.0880 0.0660 0.0694 0.0672 0.0578 0.0523 0.0488	0.6587 0.5286 0.2114 0.1463 0.1251 0.0938 0.0919 0.0803 0.0678 0.0604 0.0556
	K _{si}	u(K _{si})	K _{si, low} 95 % cove	<i>K_{si, high}</i> ۲ rage interval

IN	FILTRATION WITH UDMT		
	\bigcirc Final value of K_s		- - -
	O mean value		
	$\overline{K_s}$ = mean(Ks(:,1)) = 0.1427 E-4 m/s	\checkmark	
	O uncertainty in mean value		
	$u(\overline{K_s}) = mean(Ks(:,2)) = 0.0255 E-4 m/s$?	
	K_s values are autocorrelated		- 2

